A Hybrid Data Mining Approach for Product Complexity Analysis
نویسندگان
چکیده
This paper proposes a hybrid data mining approach to quantitatively analyze product complexity of prefabricated construction components from product nonconforming quality performance data. The proposed model is constructed in three steps, which (1) measure product complexity by introducing a Bayesian-based nonconforming quality performance indicator; (2) score each type of product complexity by developing a Hellinger distance-based distribution similarity measurement; and (3) cluster products into homogeneous complexity groups by using the agglomerative hierarchical clustering technique. An illustrative example is provided to demonstrate the proposed approach, and a case study of an industrial company in Edmonton, Canada, is conducted to validate the feasibility and applicability of the proposed model. This research inventively defines and investigates product complexity from the perspective of product quality performance. The research outcomes provide valuable insights for practitioners to better analyze and manage product complexity. In addition to this practical contribution, a novel hierarchical clustering technique is devised. This technique is capable of clustering uncertain data (i.e., probability distributions) and has the potential to be generalized to cluster all types of uncertain data.
منابع مشابه
Credit scoring in banks and financial institutions via data mining techniques: A literature review
This paper presents a comprehensive review of the works done, during the 2000–2012, in the application of data mining techniques in Credit scoring. Yet there isn’t any literature in the field of data mining applications in credit scoring. Using a novel research approach, this paper investigates academic and systematic literature review and includes all of the journals in the Science direct onli...
متن کاملA New Knowledge-Based System for Diagnosis of Breast Cancer by a combination of the Affinity Propagation and Firefly Algorithms
Breast cancer has become a widespread disease around the world in young women. Expert systems, developed by data mining techniques, are valuable tools in diagnosis of breast cancer and can help physicians for decision making process. This paper presents a new hybrid data mining approach to classify two groups of breast cancer patients (malignant and benign). The proposed approach, AP-AMBFA, con...
متن کاملA Hybrid Model for Mining Multi Dimensional Data Sets
This paper presents a hybrid data mining approach based on supervised learning and unsupervised learning to identify the closest data patterns in the data base. This technique enables to achieve the maximum accuracy rate with minimal complexity. The proposed algorithm is compared with traditional clustering and classification algorithm and it is also implemented with multidimensional datasets. ...
متن کاملA new approach based on data envelopment analysis with double frontiers for ranking the discovered rules from data mining
Data envelopment analysis (DEA) is a relatively new data oriented approach to evaluate performance of a set of peer entities called decision-making units (DMUs) that convert multiple inputs into multiple outputs. Within a relative limited period, DEA has been converted into a strong quantitative and analytical tool to measure and evaluate performance. In an article written by Toloo et al. (2009...
متن کاملApplying rock engineering systems (RES) approach to evaluate and classify the coal spontaneous combustion potential in Eastern Alborz coal mines
Subject analysis of the potential of spontaneous combustion in coal layers with analytical and numerical methods has been always considered as a difficult task because of the complexity of the coal behavior and the number of factors influencing it. Empirical methods, due to accounting for certain and specific factors, have not accuracy and efficiency for all positions. The Rock Engineering Syst...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1710.10555 شماره
صفحات -
تاریخ انتشار 2017